

A095651


Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 16.


7



523, 887, 1129, 2557, 3271, 3739, 3947, 4027, 4159, 4423, 4759, 4831, 5449, 6397, 6427, 6451, 7351, 7459, 8017, 8543, 8783, 8867, 9067, 9349, 10433, 10667, 11177, 11447, 11597, 11867, 12049, 13063, 13267, 13421, 13729, 14011, 14087, 14107
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes that are fourth prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.


LINKS

Table of n, a(n) for n=1..38.


MATHEMATICA

m = 4; Prime[ 1 + Select[ Range[1700], Prime[ # + 2]  2*Prime[ # + 1] + Prime[ # ]  4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)


CROSSREFS

Cf. A095419, A095420, A095648, A095649, A095650, A095672, A095673.
Sequence in context: A142778 A152673 A124587 * A117838 A031936 A066540
Adjacent sequences: A095648 A095649 A095650 * A095652 A095653 A095654


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Jul 02 2004


EXTENSIONS

Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005


STATUS

approved



