|
|
A095384
|
|
Number of different initial values for 3x+1 trajectories started with initial values not exceeding 2^n and in which the peak values are also not larger than 2^n.
|
|
5
|
|
|
1, 2, 3, 4, 10, 13, 33, 55, 112, 181, 352, 580, 1072, 2127, 6792, 13067, 25906, 51447, 104575, 208149, 415921, 833109, 1661341, 3328124, 6648354, 13283680, 26533708, 53083687, 106166631, 212243709, 424564626, 848967377, 1698139390, 3396064464, 6791623786
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..34.
Index entries for sequences related to 3x+1 (or Collatz) problem
|
|
EXAMPLE
|
n=4: between iv={1,2,...,16} {2,8}U{3,5,6,10,12,16} provides peak values smaller than or equal with 16, so a(4) = 10 = A087256(4)+4
|
|
MATHEMATICA
|
c[x_]:=c[x]=(1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_]:=FixedPointList[c, x]; {$RecursionLimit=1000; m=0}; Table[Print[{xm-1, m}]; m=0; Do[If[ !Greater[Max[fpl[n]], 2^xm], m=m+1], {n, 1, 2^xm}], {xm, 1, 30}]
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Table[Length[Select[Range[x=2^n], Max[Collatz[#]] <= x &]], {n, 0, 10}] (* T. D. Noe, Apr 29 2013 *)
|
|
CROSSREFS
|
Cf. A087256, A095381, A095382, A095383.
Cf. A006884, A006885, A222292, A224538, A224540.
Sequence in context: A193775 A131120 A115195 * A177084 A115899 A183527
Adjacent sequences: A095381 A095382 A095383 * A095385 A095386 A095387
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Jun 14 2004
|
|
EXTENSIONS
|
a(21)-a(32) from Donovan Johnson, Feb 02 2011
a(0) from T. D. Noe, Apr 29 2013
a(33)-a(34) from Donovan Johnson, Jun 05 2013
|
|
STATUS
|
approved
|
|
|
|