login
A095369
Number of walks of length n between two nodes at distance 4 in the cycle graph C_9.
4
1, 1, 6, 7, 28, 36, 120, 165, 495, 716, 2003, 3018, 8024, 12512, 31977, 51357, 127110, 209475, 504736, 850840, 2003784, 3445885, 7956715, 13926276, 31609071, 56191734, 125640180, 226444616, 499685777, 911607609, 1988440598
OFFSET
4,3
COMMENTS
In general, (2^n/m)*Sum_{r=0..m-1} cos(2*Pi*k*r/m)*cos(2*Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=9 and k=4.
FORMULA
a(n) = (2^n/9)*Sum_{r=0..8} cos(8*Pi*r/9)*cos(2*Pi*r/9)^n.
G.f.: x^4/((1+x)(-1+2x)(1-3x^2+x^3)).
a(n) = a(n-1) + 5*a(n-2) - 4*a(n-3) - 5*a(n-4) + 2*a(n-5).
MATHEMATICA
Drop[CoefficientList[Series[-x^4/((1 + x) (-1 + 2 x) (1 - 3 x^2 + x^3)), {x, 0, 34}], x], 4] (* Michael De Vlieger, Jan 23 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jul 03 2004
STATUS
approved