login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095315 Primes in whose binary expansion the number of 1 bits is <= 2 + number of 0 bits. 5
2, 3, 5, 11, 13, 17, 19, 37, 41, 43, 53, 67, 71, 73, 83, 89, 97, 101, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 227, 229, 233, 241, 257, 263, 269, 271, 277, 281, 283, 293, 307, 313, 331, 337, 353, 389, 397 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..25000 (terms 1..1000 from Harvey P. Dale)

A. Karttunen and J. Moyer: C-program for computing the initial terms of this sequence

EXAMPLE

13 is in the sequence because 13 = 1101_2. '1101' has three 1's and one 0. 3 = 2 + 1. - Indranil Ghosh, Feb 07 2017

MATHEMATICA

Select[Prime[Range[100]], DigitCount[#, 2, 1]<3+DigitCount[#, 2, 0]&] (* Harvey P. Dale, Aug 12 2016 *)

PROG

(PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0;

for(i = 0, nB, if(bittest(x, i), b1++; , b0++; ); );

if(b1 <= (2+b0), return(1); , return(0); ); };

forprime(x = 2, 397, if(B(x), print1(x, ", "); ); );

\\ Washington Bomfim, Jan 12 2011

(Python)

i=j=1

while j<=25000:

....if isprime(i)==True and bin(i)[2:].count("1")<=2+bin(i)[2:].count("0"):

........print str(j)+" "+str(i)

........j+=1

....i+=1 # Indranil Ghosh, Feb 07 2017

CROSSREFS

Complement of A095314 in A000040. Subset: A095287. Subset of A095319. Cf. also A095335.

Sequence in context: A089191 A225184 A038947 * A221717 A140558 A040044

Adjacent sequences:  A095312 A095313 A095314 * A095316 A095317 A095318

KEYWORD

nonn,easy

AUTHOR

Antti Karttunen, Jun 04 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 01:31 EDT 2021. Contains 343198 sequences. (Running on oeis4.)