login
A095280
Lower Wythoff primes, i.e., primes in A000201.
4
3, 11, 17, 19, 29, 37, 43, 53, 59, 61, 67, 71, 79, 97, 101, 103, 113, 127, 131, 137, 139, 163, 173, 179, 181, 197, 199, 211, 223, 229, 239, 241, 257, 263, 271, 281, 283, 307, 313, 317, 331, 347, 349, 359, 367, 373, 383, 389, 401, 409, 419, 433
OFFSET
1,1
COMMENTS
Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an even number of 0's.
For generalizations and conjectures, see A184774.
MAPLE
R:= NULL: count:= 0:
for n from 1 while count < 100 do
p:= floor(n*phi);
if isprime(p) then R:= R, p; count:= count+1 fi
od:
R; # Robert Israel, Jan 17 2023
MATHEMATICA
(See A184792.)
PROG
(Python)
from math import isqrt
from itertools import count, islice
from sympy import isprime
def A095280_gen(): # generator of terms
return filter(isprime, ((n+isqrt(5*n**2)>>1) for n in count(1)))
A095280_list = list(islice(A095280_gen(), 30)) # Chai Wah Wu, Aug 16 2022
CROSSREFS
Intersection of A000040 & A000201. Complement of A095281 in A000040. Cf. A095080, A095083, A095084, A095290, A184792, A184793, A184794, A184796.
Sequence in context: A154497 A322171 A038946 * A085317 A210311 A033200
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 04 2004
STATUS
approved