login
A095199
Least integer multiple of f(1/n) where f(1/n) is the number obtained by retaining only n digits after decimal and deleting the rest.
2
1, 1, 333, 1, 1, 83333, 1428571, 1, 111111111, 1, 909090909, 83333333333, 76923076923, 7142857142857, 33333333333333, 1, 588235294117647, 11111111111111111, 52631578947368421, 1, 47619047619047619047, 227272727272727272727, 434782608695652173913, 20833333333333333333333, 1, 3846153846153846153846153
OFFSET
1,3
FORMULA
a(n) = floor(10^n/n) / gcd(10^n,floor(10^n/n)). - Max Alekseyev, Dec 06 2013
EXAMPLE
a(6) = 83333, 1/6 = 0.16666666666666666... f(1/6) = .166666. and the least integer multiple of .166666 is 83333.
PROG
(PARI) A095199(n) = my(t); t=10^n\n; t/gcd(t, 10^n) /* Alekseyev */
CROSSREFS
Sequence in context: A257892 A235020 A111690 * A158081 A248062 A056089
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Jun 05 2004
EXTENSIONS
More terms from Max Alekseyev, Apr 22 2010
STATUS
approved