login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095190 Doubled Thue-Morse sequence: the A010060 sequence replacing 0 by 0,0 and 1 by 1,1. 7
0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

If b(n)=A010060, then a(2n)=b(n), a(2n+1)=b(n).

Let n=Sum(c(k)*2^k), c(k)=0,1, be the binary form of n, n=Sum(d(k)*3^k), d(k)=0,1,2, the ternary form, n=Sum(e(k)*5^k), e(k)=0,1,2,3,4, the base 5 form. Then a(n)=Sum(c(k)+d(k)) mod 2 = Sum(c(k)+e(k)) mod 2.

REFERENCES

Mignosi, F.; Restivo, A.; Sciortino, M. Words and forbidden factors. WORDS (Rouen, 1999). Theoret. Comput. Sci. 273 (2002), no. 1-2, 99--117. MR1872445 (2002m:68096) - From N. J. A. Sloane, Jul 10 2012

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = A096273(n) mod 2. - Benoit Cloitre, Jun 29 2004

a(n) = mod(A000120(floor(n/2)), 2) = mod(A010060(floor(n/2)), 2). - Paul Barry, Jan 07 2005

a(n)=mod(-1+sum{k=0..n, mod(C(n, 2k), 2)}, 3). - Paul Barry, Jan 14 2005

a(n)=mod(log_2(sum{k=0..n, mod(C(n,2k),2)}),2). - Paul Barry, Jun 12 2006

EXAMPLE

The Thue-Morse sequence is: 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 ... so a(n) = 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 ...

CROSSREFS

Cf. A010059, A010060, A096288, A096289.

Sequence in context: A011657 A072126 A111113 * A131735 A131736 A152228

Adjacent sequences:  A095187 A095188 A095189 * A095191 A095192 A095193

KEYWORD

easy,nonn

AUTHOR

Miklos Kristof and Peter Boros, Jun 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 25 15:28 EST 2014. Contains 249997 sequences.