

A095182


Consider the triangle in which the jth row begins with prime(j) and is the arithmetic progression with least common difference such that the remaining j1 terms are composite and not divisible by prime(j). Sequence gives last term in each row.


2



2, 4, 27, 10, 39, 68, 299, 194, 159, 497, 261, 840, 1205, 576, 901, 2318, 2155, 2730, 2569, 1762, 4853, 9550, 6265, 8622, 12313, 7176, 17289, 7208, 23657, 17136, 25297, 41640, 21609, 38782, 17115, 45056, 10561, 70574, 28401, 63392, 104539, 14900
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..42.


MATHEMATICA

a[n_] := For[r = 1, True, r++, ro = Table[Prime[n] + k* r, {k, 0, n  1}]; If[AllTrue[Rest[ro], CompositeQ[#] && !Divisible[#, Prime[n]]&], Return[ro[[1]]]]]; Table[a[n], {n, 1, 42}] (* JeanFrançois Alcover, Sep 26 2017 *)


PROG

(PARI) For arithprog(p, j) see A095181. {m=42; for(j=1, m, p=prime(j); d=arithprog(p, j); print1(p+d*(j1), ", "))}


CROSSREFS

Cf. A095181 for the first few rows of the triangle.
Sequence in context: A088888 A102996 A189896 * A104465 A175759 A098515
Adjacent sequences: A095179 A095180 A095181 * A095183 A095184 A095185


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Jun 02 2004


EXTENSIONS

Edited and extended by Klaus Brockhaus, Jun 03 2004


STATUS

approved



