This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095102 Odd primes p for which all sums Sum_{i=1..u} L(i/p) (with u ranging from 1 to (p-1)) are nonnegative, where L(i/p) is Legendre symbol of i and p, defined to be 1 if i is a quadratic residue (mod p) and -1 if i is a quadratic non-residue (mod p). 12
 3, 7, 11, 23, 31, 47, 59, 71, 79, 83, 103, 131, 151, 167, 191, 199, 239, 251, 263, 271, 311, 359, 383, 419, 431, 439, 479, 503, 563, 599, 607, 647, 659, 719, 743, 751, 839, 863, 887, 911, 919, 971, 983, 991, 1031, 1039, 1063, 1091, 1103, 1151 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All 4k+3 primes whose Legendre-vector (cf. A055094) forms a valid Dyck-path (cf. A014486). LINKS T. D. Noe, Table of n, a(n) for n=1..1000 A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence Peter Borwein, Stephen K.K. Choi and Michael Coons, Completely multiplicative functions taking values in {-1,1} PROG (Sage) def A095102_list(n) :     def is_Motzkin(n, k):         s = 0         for i in (1..k) :             s += jacobi_symbol(i, n)             if s < 0 : return false         return true     P = filter(is_prime, range(n+1)[3::4])     return filter(lambda m: is_Motzkin(m, m//2), P) A095102_list(1151) # Peter Luschny, Aug 09 2012 CROSSREFS Intersection of A000040 and A095100. Subset of A080114 (see comments there). Complement of A095103 in A002145. a(n) = 4*A095272(n)+3. Cf. A095092. Sequence in context: A239227 A154427 A287459 * A192614 A112715 A106935 Adjacent sequences:  A095099 A095100 A095101 * A095103 A095104 A095105 KEYWORD nonn AUTHOR Antti Karttunen, Jun 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.