%I #25 May 06 2021 11:04:12
%S 17,19,43,53,59,61,67,101,103,127,137,163,179,197,211,229,239,263,271,
%T 281,307,313,331,347,349,373,383,389,433,449,457,467,491,499,509,569,
%U 577,593,601,619,643,653,661,677,739,773,787,797,821,823
%N Fibodd primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with one.
%H Alois P. Heinz, <a href="/A095081/b095081.txt">Table of n, a(n) for n = 1..10000</a>
%H A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%t r = Map[Fibonacci, Range[2, 12]]; Select[Prime@ Range@ 144, Last@ Flatten@ Map[Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], # + 1, # > 1 &]] == 1 &] (* _Michael De Vlieger_, Mar 27 2016, Version 10 *)
%o (PARI)
%o genit(maxx)={for(n=1,maxx,q=(n-1)+(n+sqrtint(5*n^2))\2; if(isprime(q), print1(q,",")));} \\ _Bill McEachen_, Mar 26 2016
%o (Python)
%o from sympy import fibonacci, primerange
%o def a(n):
%o k=0
%o x=0
%o while n>0:
%o k=0
%o while fibonacci(k)<=n: k+=1
%o x+=10**(k - 3)
%o n-=fibonacci(k - 1)
%o return x
%o def ok(n):
%o return str(a(n))[-1]=="1"
%o print([n for n in primerange(1, 1001) if ok(n)]) # _Indranil Ghosh_, Jun 07 2017
%Y Intersection of A000040 and A003622. Union of A095086 and A095089. Cf. A095061, A095080.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jun 01 2004