login
Zero-bit dominant primes, i.e., primes whose binary expansion contains more 0's than 1's.
7

%I #25 Apr 30 2021 16:34:18

%S 17,67,73,97,131,137,193,257,263,269,277,281,293,337,353,389,401,449,

%T 521,523,547,577,593,641,643,673,769,773,1031,1033,1039,1049,1051,

%U 1061,1063,1069,1091,1093,1097,1109,1123,1129,1153,1163,1171

%N Zero-bit dominant primes, i.e., primes whose binary expansion contains more 0's than 1's.

%H Indranil Ghosh, <a href="/A095071/b095071.txt">Table of n, a(n) for n = 1..20000</a>

%H A. Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>

%e 73 is in the sequence because 73 is a prime and 73_10 = 1001001_2. '1001001' has four 0's and one 1. - _Indranil Ghosh_, Jan 31 2017

%t Reap[Do[p=Prime[k];id=IntegerDigits[p,2];n=Length@id;If[Count[id,0]>n/2,Sow[p]],{k,200}]][[2,1]]

%t (* _Zak Seidov_ *)

%o (PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0;

%o for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); );

%o if(b0 > b1, return(1);, return(0););};

%o forprime(x = 2, 1171, if(B(x), print1(x, ", "); ); ); \\ _Washington Bomfim_, Jan 11 2011

%o (PARI){forprime(p=2,1171,nB=floor(log(p)/log(2));

%o sum(i=0,nB,bittest(p,i))<=nB/2&print1(p,","))} \\ _Zak Seidov_, Jan 11 2011

%o (Python)

%o #Program to generate the b-file

%o from sympy import isprime

%o i=1

%o j=1

%o while j<=200:

%o if isprime(i) and bin(i)[2:].count("0")>bin(i)[2:].count("1"):

%o print(str(j)+" "+str(i))

%o j+=1

%o i+=1 # _Indranil Ghosh_, Jan 31 2017

%Y Complement of A095074 in A000040. Subset: A095072. Cf. A095019.

%K nonn,base,easy

%O 1,1

%A _Antti Karttunen_, Jun 01 2004