login
A094980
a(n) = floor(7^n/4^n).
1
1, 1, 3, 5, 9, 16, 28, 50, 87, 153, 269, 471, 825, 1443, 2526, 4421, 7737, 13540, 23696, 41468, 72570, 126998, 222247, 388933, 680633, 1191108, 2084439, 3647768, 6383595, 11171292, 19549761, 34212082, 59871144, 104774502, 183355379
OFFSET
0,3
LINKS
FORMULA
Given the Fibonacci numbers F(n) = F(n - 2) + F(n - 1) with F(-2) = -1 and F(-1) = 1 (see A000045), F(n) < (7/4)^n for all n > -1. - Alonso del Arte, Oct 21 2018
EXAMPLE
a(2) = floor((7/4)^2) = floor(3.0625) = 3.
a(3) = floor((7/4)^3) = floor(5.359375) = 5.
MATHEMATICA
Floor[(7/4)^Range[0, 39]]
PROG
(Magma) [Floor(7^n / 4^n): n in [0..40]]; // Vincenzo Librandi, Sep 08 2011
(PARI) a(n) = 7^n\4^n; \\ Michel Marcus, Oct 23 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, May 26 2004
STATUS
approved