login
A094966
Left-hand neighbors of Fibonacci numbers in Stern's diatomic series.
5
0, 1, 1, 3, 3, 8, 8, 21, 21, 55, 55, 144, 144, 377, 377, 987, 987, 2584, 2584, 6765, 6765, 17711, 17711, 46368, 46368, 121393, 121393, 317811, 317811, 832040, 832040, 2178309, 2178309, 5702887, 5702887, 14930352, 14930352, 39088169, 39088169
OFFSET
0,4
COMMENTS
Fibonacci(2n) repeated. a(n) is the left neighbor of Fibonacci(n+2) in A002487 and A049456. A000045(n+2) = a(n)+A094967(n).
FORMULA
G.f.: x*(1+x) / (1-3*x^2+x^4).
a(n) = Fibonacci(n)*(1+(-1)^n)/2 + Fibonacci(n+1)*(1-(-1)^n)/2.
a(n) = (2^(-2-n)*((1-sqrt(5))^n*(-3+sqrt(5)) - (-1-sqrt(5))^n*(-1+sqrt(5)) - (-1+sqrt(5))^n - sqrt(5)*(-1+sqrt(5))^n + 3*(1+sqrt(5))^n + sqrt(5)*(1+sqrt(5))^n))/sqrt(5). - Colin Barker, Mar 28 2016
MATHEMATICA
CoefficientList[Series[x (1 + x)/(1 - 3 x^2 + x^4), {x, 0, 38}], x] (* Michael De Vlieger, Mar 28 2016 *)
PROG
(PARI) concat(0, Vec(x*(1+x)/(1-3*x^2+x^4) + O(x^50))) \\ Colin Barker, Mar 28 2016
(Magma) [Fibonacci(n)*(1+(-1)^n)/2 + Fibonacci(n+1)*(1-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Mar 29 2016
CROSSREFS
Cf. A001906.
Sequence in context: A113166 A126872 A336102 * A095068 A248696 A021299
KEYWORD
easy,less,nonn
AUTHOR
Paul Barry, May 26 2004
STATUS
approved