login
A094965
A continued fraction transformation of e.
1
2, 1, 2, 6, 6, 7, 1, 4, 1, 1, 0, 7, 5, 2, 9, 7, 4, 2, 8, 2, 4, 4, 4, 3, 0, 8, 0, 6, 3, 7, 2, 1, 0, 0, 0, 8, 4, 1, 8, 7, 4, 2, 8, 9, 0, 6, 8, 3, 9, 7, 8, 2, 5, 2, 8, 4, 6, 2, 5, 2, 2, 4, 5, 6, 4, 3, 6, 3, 9, 5, 2, 8, 2, 3, 9, 3, 0, 3, 6, 9, 0, 3, 6, 8, 5, 4, 9, 8, 8, 0, 3, 4, 3, 9, 5, 3, 3, 0, 1, 1, 6, 9, 8, 8, 1
OFFSET
1,1
COMMENTS
The terms of the continued fraction representation of this constant (2.126671411...) are the decimal digits of e.
When trying to recover the digits of e from this continued fraction, one gets 2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 13, 5, ... whereas e is 2.718281828459045...; recovered "digits" (sometimes greater than 9) that do not match the actual decimal digits of e occur around places where the actual digits include a 0. E.g., the "904" substring in the actual digits of e results in a recovered "digit" of 9+4 = 13. - Michel Marcus and Jon E. Schoenfield, Mar 16 2018
EXAMPLE
2.126671411...
MATHEMATICA
RealDigits[ FromContinuedFraction[ RealDigits[E, 10, 125][[1]]], 10, 111][[1]]
CROSSREFS
Cf. A001113.
Sequence in context: A285030 A281781 A351317 * A025277 A248100 A153896
KEYWORD
cons,easy,nonn,base
AUTHOR
Robert G. Wilson v, May 26 2004
STATUS
approved