login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094964 A continued fraction transformation of Pi. 2
3, 8, 2, 8, 6, 5, 6, 1, 6, 2, 0, 5, 1, 1, 7, 6, 3, 4, 9, 2, 1, 6, 8, 0, 7, 8, 5, 8, 1, 2, 3, 2, 7, 1, 5, 3, 8, 3, 4, 1, 3, 8, 0, 6, 0, 0, 7, 6, 7, 2, 4, 7, 4, 6, 7, 8, 8, 4, 6, 4, 8, 6, 7, 7, 0, 9, 9, 4, 9, 4, 2, 0, 3, 6, 6, 3, 5, 2, 0, 7, 5, 2, 6, 0, 3, 7, 1, 1, 5, 0, 4, 1, 8, 0, 7, 0, 0, 9, 2, 7, 6, 8, 0, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The number, C, has the continued fraction which is the decimal expansion of Pi.

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

C = 3.828656162...

MATHEMATICA

RealDigits[ FromContinuedFraction[ RealDigits[Pi, 10, 125][[1]]], 10, 111][[1]]

PROG

(PARI) extractDigits(x, {basis=10}) = { local(d); d=[floor(x)]; x = basis*(x - floor(x)); for (i=1, ceil(precision(x)*log(10)/log(basis))+5, d = concat(d, floor(x)); x = basis*(x - floor(x)); ); return(d); }

continuedFraction(digs) = { local(rtn, n, first); rtn = 0; for (i=0, #digs-1, n = digs[ #digs - i]; if (n, first = i; rtn = n; break; ); ); for (i=first+1, #digs-1, rtn = digs[ #digs - i] + 1/rtn; ); return(rtn); }

\p 1000

continuedFraction(extractDigits(Pi, 10))+0. \\ Olivier Favre (of.olivier.favre(AT)gmail.com), Mar 01 2010

CROSSREFS

Cf. A000796.

Sequence in context: A182168 A086178 A016669 * A197144 A138714 A038755

Adjacent sequences:  A094961 A094962 A094963 * A094965 A094966 A094967

KEYWORD

cons,easy,nonn,base

AUTHOR

Robert G. Wilson v, May 26 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 15:51 EDT 2019. Contains 328101 sequences. (Running on oeis4.)