login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094959 Number of positive integer coefficients in n-th Bernoulli polynomial. 2
1, 2, 1, 3, 1, 2, 1, 2, 3, 4, 3, 5, 2, 2, 1, 5, 1, 6, 3, 4, 5, 4, 1, 6, 4, 2, 5, 9, 7, 2, 1, 9, 8, 8, 10, 17, 10, 8, 7, 11, 5, 10, 7, 7, 10, 4, 3, 12, 8, 7, 12, 8, 1, 10, 12, 18, 18, 11, 10, 14, 10, 2, 1, 16, 19, 22, 14, 12, 15, 17, 9, 22, 14, 10, 19, 15, 9, 16, 9, 2, 27, 23, 18, 26, 25, 20, 14, 22 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is, more explicitly, the number of positive integers of the form C(n+1,i)*B(i) where B(i) is the i-th Bernoulli number and C(n,k) is the binomial coefficient (k -sets from n distinct elements). The floor((n-1)/2) zero cases are excluded from this sequence. - Olivier Gérard, Oct 19 2005

REFERENCES

R. L. Graham et al., Concrete Math., Chapter 6.5, Bernoulli numbers

LINKS

Table of n, a(n) for n=1..88.

EXAMPLE

B(5,x)=x^5 - (5/2)*x^4 +( 5/3)*x^3 +0*x^2- (1/6)*x+0 hence a(5)=1

MATHEMATICA

Table[Count[ DeleteCases[ Table[Binomial[j + 1, i]*BernoulliB[ i], {i, 0, j}], 0], _Integer], {j, 0, 200}] (Gerard)

PROG

(PARI) B(n, x)=sum(i=0, n, binomial(n, i)*bernfrac(i)*x^(n-i)); a(n)=sum(i=0, n, if(frac(polcoeff(B(n, x), i)), 0, 1))-floor((n-1)/2)

CROSSREFS

Cf. A027641, A027642.

Sequence in context: A184169 A176207 A059130 * A162696 A108103 A111376

Adjacent sequences:  A094956 A094957 A094958 * A094960 A094961 A094962

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Jun 19 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 05:12 EST 2018. Contains 299330 sequences. (Running on oeis4.)