login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094954 Array T(k,n) read by antidiagonals. G.f.: x(1-x)/(1-kx+x^2), k>1. 29
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 13, 1, 1, 5, 19, 41, 34, 1, 1, 6, 29, 91, 153, 89, 1, 1, 7, 41, 169, 436, 571, 233, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Also, values of polynomials with coefficients in A098493 (see Fink et al.). See A098495 for negative k.

Number of dimer tilings of the graph S_{k-1} X P_{2n-2}.

LINKS

Table of n, a(n) for n=1..64.

Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114.

Elizabeth Wilmer, A note on Stephan's conjecture 87

Elizabeth Wilmer, A note on Stephan's conjecture 87 [cached copy]

FORMULA

Recurrence: T(k, 1) = 1, T(k, 2) = k-1, T(k, n) = kT(k, n-1) - T(k, n-2).

For n>3, T(k, n) = [k(k-2) + T(k, n-1)T(k, n-2)] / T(k, n-3).

T(k, n+1) = S(n, k) - S(n-1, k) = U(n, k/2) - U(n-1, k/2), with S, U = Chebyshev polynomials of second kind.

T(k+2, n+1) = Sum[i=0..n, k^(n-i) * C(2n-i, i)] (from comments by Benoit Cloitre).

EXAMPLE

1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...

1,2,5,13,34,89,233,610,1597, ...

1,3,11,41,153,571,2131,7953, ...

1,4,19,91,436,2089,10009,47956, ...

1,5,29,169,985,5741,33461,195025, ...

1,6,41,281,1926,13201,90481,620166, ...

MATHEMATICA

max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-Fran├žois Alcover, Dec 27 2011 *)

PROG

(PARI) T(k, n)=polcoeff(x*(1-x)/(1-k*x+x*x), n)

CROSSREFS

Rows are first differences of rows in array A073134.

Rows 2-14 are A000012, A001519, A079935/A001835, A004253, A001653, A049685, A070997, A070998, A072256, A078922, A077417, A085260, A001570. Other rows: A007805 (k=18), A075839 (k=20), A077420 (k=34), A078988 (k=66).

Columns include A028387. Diagonals include A094955, A094956. Antidiagonal sums are A094957.

Sequence in context: A121207 A097084 A143327 * A083064 A204057 A241578

Adjacent sequences:  A094951 A094952 A094953 * A094955 A094956 A094957

KEYWORD

nonn,tabl

AUTHOR

Ralf Stephan, May 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 06:27 EDT 2018. Contains 316307 sequences. (Running on oeis4.)