login
Number of nonisomorphic (possibly decomposable) self-dual quantum codes on n qubits.
4

%I #14 Nov 30 2020 18:43:35

%S 1,2,3,6,11,26,59,182,675,3990,45144,1323363

%N Number of nonisomorphic (possibly decomposable) self-dual quantum codes on n qubits.

%C Also number of nonisomorphic (indecomposable or decomposable) self-dual codes of Type 4^H+ and length n.

%D L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12, Preprint 2005.

%H Lars Eirik Danielsen and Matthew G. Parker, <a href="http://arxiv.org/abs/cs/0504102">Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform</a>, (2005), arxiv:cs/0504102. In Sequences and Their Applications-SETA 2004, Lecture Notes in Computer Science, Volume 3486/2005, Springer-Verlag. [Added by N. J. A. Sloane, Jul 08 2009]

%H Anatoly Dymarsky and Alfred Shapere, <a href="https://arxiv.org/abs/2009.01244">Quantum stabilizer codes, lattices, and CFTs</a>, arXiv:2009.01244 [hep-th], 2020.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%Y See A090899 for more information. Cf. also A110302, A110306.

%K nonn

%O 1,2

%A Lars Eirik Danielsen (larsed(AT)ii.uib.no) and Matthew G. Parker (matthew(AT)ii.uib.no), Jun 17, 2004.