The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094916 a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Fibonacci word A003849 (with offset changed to 1). 1

%I

%S 1,1,1,1,2,1,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,3,3,2,2,3,2,2,2,2,2,2,

%T 2,3,2,3,3,3,3,2,2,2,3,3,2,2,3,2,2,2,2,2,2,2,2,3,3,2,3,3,3,3,3,3,3,2,

%U 2,3,2,3,3,3,3,2,2,2,3,3,2,2,3,2,2,2,2,2,2,2,3,2,3,3,3,3,2,3,3,3,3,3,3,3,3

%N a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Fibonacci word A003849 (with offset changed to 1).

%C The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].

%H <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>

%e b(1) to b(12) are 0,1,0,0,1,0,1,0,0,1,0,0, which we can write as xy^2 with x = 0,1,0,0,1,0 and y = 1,0,0; and no greater k is possible, so a(12) = 2.

%Y Cf. A090822, A003849, A093914, A093921.

%K nonn,easy

%O 1,5

%A _N. J. A. Sloane_, Jun 18 2004

%E More terms from _David Wasserman_, Jul 03 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 16:31 EDT 2020. Contains 337265 sequences. (Running on oeis4.)