%I #16 Apr 03 2023 10:36:10
%S 1354361,1354357,1354351,1354343,1354333,1354321,1354307,1354291,
%T 1354273,1354253,1354231,1354207,1354181,1354153,1354123,1354091,
%U 1354057,1354021,1353983,1353943,1353901,1353857,1353811,1353763
%N Absolute value of n^2 + n - 1354363.
%C a(n) generates primes with probability >1/2 for a random integer [1,10^4] (see reference). For confirmation, I checked the distribution of primes using the link. Results up to a(24) are shown below. P and C stand for prime and composite, respectively. a(1):P a(2):C a(3):C a(4):P a(5):P a(6):P a(7):P a(8):P a(9):C a(10):C a(11):P a(12):P a(13):P a(14):P a(15):C a(16):C a(17):P a(18):P a(19):P a(20):C a(21):P a(22):P a(23):C a(24):P Probability was 16/24 > 1/2.
%D R. Crandall and C. Pomerance, "Prime numbers: a computational perspective", Springer-Verlag, Inc., NY, 2001, p. 49.
%H Alois P. Heinz, <a href="/A094914/b094914.txt">Table of n, a(n) for n = 1..2000</a>
%H Chris Caldwell, <a href="https://t5k.org/curios/includes/file.php?file=primetest.html">Prime test</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = |n^2 + n - 1354363|.
%o (PARI) a(n)=abs(n^2+n-1354363) \\ _Charles R Greathouse IV_, Oct 16 2012
%K nonn,easy
%O 1,1
%A Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jun 18 2004