login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094895 Sequence generated from a Knight's tour of a 4 X 4 chessboard considered as a matrix. 2
1, 280, 8524, 295840, 10014256, 340831360, 11585508544, 393929320960, 13393420731136, 455377714186240, 15482831007960064, 526416344465121280, 17898154990259286016, 608537275441252433920, 20690267318823093059584 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The 4 X 4 chessboard format is a Knight's tour (inclusive of the integers 1-16) as shown on p. 76 of Watkins, which he generated from the Gray code. a(n)/a(n-1) tends to 34, an eigenvalue of the characteristic polynomial of the matrix: x^4 - 24x^3 - 324x^2 - 544x. The recursion multipliers (24), (324) and (544) may be seen with changed signs as the 3 rightmost coefficients of the characteristic polynomial.

REFERENCES

John J. Watkins, "Across the Board, The Mathematics of Chessboard Problems" Princeton University Press, 2004, p. 76.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..650

Index entries for linear recurrences with constant coefficients, signature (24,324,544).

FORMULA

Begin with the 4 X 4 matrix M = [1 6 15 12 / 14 9 4 7 / 5 2 11 16 / 10 13 8 3]. Then a(n) = leftmost term in M^n * [1 0 0 0]. Recursion method: a(n+3) = 24*a(n+2) + 324*a(n+1) + 544*a(n); n>4.

From Colin Barker, Oct 21 2012: (Start)

a(n) = 2^(n-2)*(17*(-4)^n + 153*(-1)^n + 15*17^n)/17.

G.f.: x*(1 +256*x +1480*x^2)/((1+2*x)*(1+8*x)*(1-34*x)). (End)

EXAMPLE

a(3) = 8524, leftmost term of M^3 * [1 0 0 0]: [8524, 8816, 8780, 8560].

a(5) = 10014256 = 24*295840 + 324*8524 + 544*280.

MATHEMATICA

a[n_] := (MatrixPower[{{1, 6, 15, 12}, {14, 9, 4, 7}, {5, 2, 11, 16}, {10, 13, 8, 3}}, n].{{1}, {0}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 20}] (* Robert G. Wilson v, Jun 16 2004 *)

Table[2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1)), {n, 20}] (* G. C. Greubel, Jul 11 2019 *)

PROG

(PARI) vector(20, n, 2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1))) \\ G. C. Greubel, Jul 11 2019

(MAGMA) [2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1)): n in [1..20]]; // G. C. Greubel, Jul 11 2019

(Sage) [2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1)) for n in (1..20)] # G. C. Greubel, Jul 11 2019

(GAP) List([1..20], n-> 2^(n-2)*((-4)^n + 9*(-1)^n + 15*17^(n-1))); # G. C. Greubel, Jul 11 2019

CROSSREFS

Sequence in context: A187384 A297724 A024214 * A223107 A218411 A272715

Adjacent sequences:  A094892 A094893 A094894 * A094896 A094897 A094898

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Jun 13 2004

EXTENSIONS

Edited and extended by Robert G. Wilson v, Jun 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 02:22 EST 2020. Contains 331976 sequences. (Running on oeis4.)