OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{k = 0..n} A046716(n, k)*4^k.
a(n) ~ n^(n-1/4)*4^n*Gamma(3/4)/(exp(n-1)*sqrt(Pi)). - Vaclav Kotesovec, Oct 03 2012
Conjectured to be D-finite with recurrence: a(n) +(-4*n-1)*a(n-1) +16*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2019
MATHEMATICA
Table[n!*SeriesCoefficient[E^(4x)/(1-4x)^(1/4), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 03 2012 *)
With[{nn=20}, CoefficientList[Series[Exp[4x]/(1-4x)^(1/4), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Mar 29 2013 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(4*x)/(1-4*x)^(1/4))) \\ Joerg Arndt, May 11 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jun 13 2004
EXTENSIONS
Corrected and extended by Harvey P. Dale, Mar 29 2013
STATUS
approved