%I #9 Feb 20 2019 05:34:09
%S 5,53,173,293,2477,9173,61613,74093,170957,360293,679733,2004917,
%T 69009533,138473837,237536213,384479933,883597853,1728061733,
%U 9447241877,49107823133,1843103135837,4316096218013,15021875771117,82409880589277,326813126363093,390894884910197,1051212848890277
%N Records in A001992.
%H Michel Marcus, <a href="/A094852/b094852.txt">Table of n, a(n) for n = 1..33</a> (all terms from N. J. A. Sloane)
%H Michael John Jacobson, <a href="http://hdl.handle.net/1993/18862">Computational techniques in quadratic fields</a>, Doctor of Science in Computer Science Thesis, University of Manitoba, 1995, 147 pages.
%H Michael John Jacobson Jr. and Hugh C. Williams, <a href="https://doi.org/10.1090/S0025-5718-02-01418-7">New quadratic polynomials with high densities of prime values</a>, Math. Comp. 72 (2003), 499-519
%H D. H. Lehmer, E. Lehmer and D. Shanks, <a href="https://doi.org/10.1090/S0025-5718-1970-0271006-X">Integer sequences having prescribed quadratic character</a>, Math. Comp., 24 (1970), 433-451.
%Y Cf. A001992, A094853.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Jun 14 2004