The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094811 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 6. 4
 1, 6, 26, 100, 364, 1288, 4488, 15504, 53296, 182688, 625184, 2137408, 7303360, 24946816, 85196928, 290926848, 993379072, 3391793664, 11580678656, 39539651584, 134998297600, 460915984384, 1573671536640, 5372862566400, 18344123969536 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k. LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..1000 G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy] László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2. Xavier Gérard Viennot, A Strahler bijection between Dyck paths and planar trees. Formal power series and algebraic combinatorics (Barcelona, 1999). Discrete Math. 246 (2002), no. 1-3, 317--329. MR1887493 (2003b:05013) Index entries for linear recurrences with constant coefficients, signature (6,-10,4). FORMULA a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)*sin(r*3*Pi/4)*(2*cos(r*Pi/8))^(2n+1). G.f.: x^2/((1-2*x)*(1-4*x+2*x^2)). a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3). a(n) = A005022(n-2), n>2. - R. J. Mathar, Sep 05 2008 The g.f. x^3/(1 - 6x + 10x^2 - 4x^3) occurs on page 320 of Viennot, 2002. a(n) = (A006012(n) - 2^n)/2. - R. J. Mathar, Jun 29 2012 a(n) = (-2^(1+n) + (2-sqrt(2))^n + (2+sqrt(2))^n)/4. - Colin Barker, Apr 27 2016 E.g.f.: exp(2*x)*sinh(x/sqrt(2))^2. - Ilya Gutkovskiy, Apr 27 2016 MATHEMATICA CoefficientList[Series[1/((1 - 2x)(1 - 4x + 2x^2)), {x, 0, 200}], x] (* Vincenzo Librandi, Oct 21 2012 *) Table[FullSimplify[TrigToExp[(1/4) Sum[Sin[r*Pi/8] Sin[3 r Pi/4] (2 Cos[r Pi/8])^(2 n + 1), {r, 7}]]], {n, 2, 26}] (* Michael De Vlieger, Apr 27 2016 *) PROG (Magma) I:=[1, 6, 26]; [n le 3 select I[n] else 6*Self(n-1) - 10*Self(n-2) + 4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 21 2012 CROSSREFS See A005022 for another version. Sequence in context: A137746 A344504 A261064 * A005022 A125107 A301476 Adjacent sequences: A094808 A094809 A094810 * A094812 A094813 A094814 KEYWORD nonn,easy AUTHOR Herbert Kociemba, Jun 11 2004 EXTENSIONS Additional comments from N. J. A. Sloane, May 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 10:23 EST 2022. Contains 358630 sequences. (Running on oeis4.)