|
|
A094806
|
|
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 5.
|
|
3
|
|
|
1, 5, 20, 74, 264, 924, 3200, 11016, 37792, 129392, 442496, 1512224, 5165952, 17643456, 60250112, 205729920, 702452224, 2398414592, 8188884992, 27958972928, 95458646016, 325917686784, 1112755552256, 3799191029760, 12971261403136, 44286680330240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
In general a(n)= 2/m*Sum_{r=1..m-1} sin(r*j*Pi/m)sin(r*k*Pi/m)(2*cos(r*Pi/m))^(2n)) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n, s(0) = j, s(2n) = k.
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 2..1000
Index entries for linear recurrences with constant coefficients, signature (6,-10,4).
|
|
FORMULA
|
a(n) = (1/4)*Sum_{k=1..7} sin(Pi*k/8)sin(5*Pi*k/8)(2*cos(Pi*k/8))^(2n).
a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3).
G.f.: x^2*(x-1) / ( (2*x-1)*(2*x^2-4*x+1) )
a(n) = (-2^n+(-(2-sqrt(2))^n+(2+sqrt(2))^n)/sqrt(2))/4. - Colin Barker, Apr 27 2016
4*a(n) = 2*A007070(n-1)-2^n.- R. J. Mathar, Nov 14 2019
|
|
MATHEMATICA
|
f[n_] := FullSimplify[ TrigToExp[(1/4)Sum[ Sin[Pi*k/8]Sin[5Pi*k/8](2Cos[Pi*k/8])^(2n), {k, 1, 7}]]]; Table[ f[n], {n, 2, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
LinearRecurrence[{6, -10, 4}, {1, 5, 20}, 30] (* Harvey P. Dale, Mar 04 2015 *)
|
|
CROSSREFS
|
Sequence in context: A034535 A316222 A273718 * A289596 A026639 A248326
Adjacent sequences: A094803 A094804 A094805 * A094807 A094808 A094809
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Herbert Kociemba, Jun 11 2004
|
|
STATUS
|
approved
|
|
|
|