login
A094794
a(n) = (1/n!)*A001689(n).
8
44, 309, 1214, 3539, 8544, 18089, 34754, 61959, 104084, 166589, 256134, 380699, 549704, 774129, 1066634, 1441679, 1915644, 2506949, 3236174, 4126179, 5202224, 6492089, 8026194, 9837719, 11962724, 14440269, 17312534, 20624939, 24426264
OFFSET
0,1
FORMULA
a(n) = n^5 + 10*n^4 + 45*n^3 + 100*n^2 + 109*n + 44.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0)=44, a(1)=309, a(2)=1214, a(3)=3539, a(4)=8544, a(5)=18089. - Harvey P. Dale, Jul 25 2012
G.f.: (x^5 + 10*x^3 + 20*x^2 + 45*x + 44) / (x-1)^6. - Colin Barker, Jun 15 2013
P-recursive: n*a(n) = (n+6)*a(n-1) - a(n-2) with a(0) = 44 and a(1) = 309. Cf. A094791 and A096307. - Peter Bala, Jul 25 2021
MATHEMATICA
Table[n^5+10n^4+45n^3+100n^2+109n+44, {n, 0, 30}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {44, 309, 1214, 3539, 8544, 18089}, 30]
PROG
(PARI) a(n)=n^5+10*n^4+45*n^3+100*n^2+109*n+44 \\ Charles R Greathouse IV, Oct 16 2015
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jun 11 2004
STATUS
approved