login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094776 a(n) = largest k such that the decimal representation of 2^k does not contain the digit n. 21
86, 91, 168, 153, 107, 71, 93, 71, 78, 108 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

These values are only conjectural.

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008.

LINKS

Table of n, a(n) for n=0..9.

Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.

EXAMPLE

a(0)=86 because 2^86 = 77371252455336267181195264 is conjectured to be the highest power of 2 that doesn't contain the digit 0.

MATHEMATICA

f[n_] := Block[{a = {}, k = 1}, While[k < 10000, If[ Position[ Union[ IntegerDigits[ 2^k, 10]], n] == {}, AppendTo[a, k]]; k++ ]; a]; Table[ f[n][[ -1]], {n, 0, 9}] (* Robert G. Wilson v, Jun 12 2004 *)

CROSSREFS

Cf. A259081-A259083.

Sequence in context: A058907 A045101 A020215 * A095595 A095581 A097399

Adjacent sequences:  A094773 A094774 A094775 * A094777 A094778 A094779

KEYWORD

nonn,fini,full,base

AUTHOR

Michael Taktikos, Jun 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:41 EST 2019. Contains 329078 sequences. (Running on oeis4.)