

A094756


a(n) = least k>1 such that (1+2+3+...+k) divides (1^n + 2^n + 3^n + ... + k^n).


2



2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 16, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 16, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 16, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 22, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 16, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 16, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 16, 2, 4, 2, 7, 2, 4, 2, 7, 2, 4, 2, 22, 2, 4, 2, 7, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..102.


FORMULA

Formulae from Don Reble: If N is not divisible by 2, a(N) = 2.
Otherwise, if N is not divisible by 4, a(N) = 4.
Otherwise, if N is not divisible by 12, a(N) = 7.
Otherwise, if N is not divisible by 48, a(N) = 16.
Otherwise, if N is not divisible by 240, a(N) = 22 or 31. (31 if N is divisible by 528=11*48; otherwise 22).
Otherwise, if N is not divisible by 720, a(N) = 37.
Otherwise, if N is not divisible by 11 nor 23, a(N) = 46.
Otherwise, if N is not divisible by 77, a(N) = 58.
Otherwise, if N is not divisible by 13 nor 53, a(N) = 106.
Otherwise, if N is not divisible by 13, a(N) = 157.
Otherwise, if N is not divisible by 41 nor 83, a(N) = 166. ...
That works for N < 29549520 or so. But it is unlikely that any finite description of that kind is complete.


MATHEMATICA

f[n_] := Block[{k = 2}, While[ !IntegerQ[ 2Sum[i^n, {i, k}]/(k(k + 1))], k++ ]; k]; Table[ f[n], {n, 50}] (* Robert G. Wilson v, Jun 02 2004 *)


CROSSREFS

Cf. A094755.
Sequence in context: A261964 A177847 A021416 * A228367 A110925 A214789
Adjacent sequences: A094753 A094754 A094755 * A094757 A094758 A094759


KEYWORD

nonn


AUTHOR

Amarnath Murthy, May 29 2004


EXTENSIONS

Edited and extended by Don Reble and Robert G. Wilson v, Jun 02 2004


STATUS

approved



