|
|
A094711
|
|
Larger of a pair (p,q) of primes with (p+q)/2=prime(n)# and q-p is minimal.
|
|
2
|
|
|
7, 31, 223, 2311, 30047, 510569, 9699713, 223092949, 6469693331, 200560490213, 7420738135049, 304250263527281, 13082761331670179, 614889782588491777, 32589158477190044803, 1922760350154212639981, 117288381359406970983583
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
a(n) = Min{p prime: (p+q)/2=prime(n)# for another prime q<p};
a(n) = A002110(n) + A094709(n); (a(n) + A094710(n))/2 = A002110(n).
|
|
LINKS
|
Table of n, a(n) for n=2..18.
|
|
PROG
|
(Python)
from sympy import isprime, prime, primerange
def aupton(terms):
phash, alst = 2, []
for p in primerange(3, prime(terms)+1):
phash *= p
for k in range(1, phash//2):
if isprime(phash-k) and isprime(phash+k): alst.append(phash+k); break
return alst
print(aupton(18)) # Michael S. Branicky, May 29 2021
|
|
CROSSREFS
|
Cf. A002110, A094709, A094710.
Sequence in context: A060015 A261558 A241456 * A333735 A221875 A143564
Adjacent sequences: A094708 A094709 A094710 * A094712 A094713 A094714
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, May 21 2004
|
|
EXTENSIONS
|
Corrected by T. D. Noe, Nov 15 2006
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
|
|
STATUS
|
approved
|
|
|
|