Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Feb 14 2023 18:13:05
%S 0,0,1,2,3,4,6,8,11,14,19,24,32,40,53,66,87,108,142,176,231,286,375,
%T 464,608,752,985,1218,1595,1972,2582,3192,4179,5166,6763,8360,10944,
%U 13528,17709,21890,28655,35420,46366,57312,75023,92734,121391,150048,196416
%N Partial sums of repeated Fibonacci sequence.
%C Equals row sums of triangle A139147 starting with "1". - _Gary W. Adamson_, Apr 11 2008
%H G. C. Greubel, <a href="/A094707/b094707.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1).
%F G.f. : x^2*(1+x)/((1-x)*(1-x^2-x^4)).
%F a(n) = a(n-1) + a(n+2) - a(n-3) + a(n-4) - a(n-5).
%F a(n) = Sum_{k=0..n} Fibonacci(floor(k/2)).
%F a(n) = -2 - (sqrt(5)/2 - 1/2)^(n/2)*((2*sqrt(5)/5 - 1)*cos(Pi*n/2) + sqrt(4*sqrt(5)/5 - 8/5)*sin(Pi*n/2)) - (sqrt(5)/2 + 1/2)^(n/2)*((sqrt(sqrt(5)/5 + 2/5) - sqrt(5)/5 - 1/2)*(-1)^n - sqrt(sqrt(5)/5 + 2/5) - sqrt(5)/5-1/2).
%F a(n) = A131524(n) + A131524(n+1). - _R. J. Mathar_, Jul 07 2011
%F a(n) = Fibonacci(n/2 +3) - 2 if n even, otherwise a(n) = 2*Fibonacci((n-1)/2 + 2) - 2. - _G. C. Greubel_, Feb 12 2023
%t LinearRecurrence[{1,1,-1,1,-1}, {0,0,1,2,3}, 50] (* _Jean-François Alcover_, Nov 18 2017 *)
%o (Magma) [Fibonacci(Floor((n+6)/2))*((n+1) mod 2) + 2*Fibonacci(Floor((n+3)/2))*(n mod 2) - 2: n in [0..60]]; // _G. C. Greubel_, Feb 12 2023
%o (SageMath)
%o def A094707(n): return fibonacci((n+6)//2) - 2 if (n%2==0) else 2*fibonacci((n+3)//2) - 2
%o [A094707(n) for n in range(61)] # _G. C. Greubel_, Feb 12 2023
%Y Cf. A000045, A103609, A131524, A139147.
%K easy,nonn
%O 0,4
%A _Paul Barry_, May 21 2004