%I
%S 1,6,0,1,4,0,2,2,4,3,5,4,9,8,8,7,6,1,3,9,3,3,2,4,9,8,9,2,3,7,1,2,8,6,
%T 0,5,6,6,7,2,4,1,0,8,9,9,3,1,4,1,6,5,4,5,3,2,7,3,1,1,4,8,7,1,0,4,5,7,
%U 3,8,5,5,4,8,3,8,7,5,0,4,5,8,8,3,7,9,3,0,6,8
%N Decimal expansion of Integral_{x=0..1} (Sqrt(x)/Log(1x)) dx.
%H Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap103.html">int(sqrt(x)/log(1x),x=0..1)</a>.
%F Also equals 5/3  2*sum(abs(sum((BernoulliB(j)*StirlingS1(k, j1))/j, {j, 1, k+1}))/((2*k+3)*k!), k=1..infinity}). [_JeanFrançois Alcover_, Apr 12 2013]
%e 1.601402243549887613933249892371286056672410899314165453273114871045738554838...
%t NIntegrate[ Sqrt[x]/Log[1  x], {x, 0, 1}, MaxRecursion > 24, WorkingPrecision > 98]
%t RealDigits[NIntegrate[Sqrt[x]/Log[1x],{x,0,1},WorkingPrecision> 120],10,120] [[1]] (* _Harvey P. Dale_, Apr 05 2019 *)
%K cons,nonn
%O 1,2
%A _Robert G. Wilson v_, May 19 2004
%E Corrected and extended by _Harvey P. Dale_, Apr 05 2019
