This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094670 Smallest number which requires n iterations to reach 1 in the juggler sequence problem. 8
 1, 2, 4, 16, 7, 5, 3, 9, 33, 19, 81, 25, 353, 183, 39, 201, 103, 37, 205, 77, 681, 263, 3817, 429, 175, 1673, 539, 165, 671, 321, 5875, 477, 173, 2243, 265, 29017, 1011, 677, 9361, 659, 241, 3389, 1123, 163, 2057, 625, 15271, 4481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A juggler sequence is defined as follows: given a positive integer x, repeat: if x is even then x <- [x^(1/2)] else x <- [x^(3/2)] until x=1. The brackets indicate the floor function. a(104) is unknown ( > 10000000). - Robert G. Wilson v, Jun 11 2014 LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..103 Eric Weisstein's World of Mathematics, Juggler Sequence Robert G. Wilson v, List of n & a(n) for  n = 0..450 (with 0's for unknown entries) MATHEMATICA js[n_] := If[ EvenQ[ n], Floor[ Sqrt[n]], Floor[ Sqrt[n^3]]]; f[n_] := Length[ NestWhileList[js, n, # != 1 &]] - 1; a = Table[0, {50}]; Do[ b = f[n]; If[b < 51 && a[[b]] == 0, a[[b]] = n; Print[n, " = ", b]], {n, 10^5}] (* Robert G. Wilson v *) CROSSREFS Cf. A007320, A094679, A094698. Sequence in context: A097542 A277850 A217291 * A110005 A019540 A109584 Adjacent sequences:  A094667 A094668 A094669 * A094671 A094672 A094673 KEYWORD nonn AUTHOR Jason Earls, Jun 09 2004 EXTENSIONS More terms from Robert G. Wilson v, Jun 14 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:55 EDT 2019. Contains 328267 sequences. (Running on oeis4.)