login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094596 Number of solutions to the Lebesgue-Nagell equation x^2 + n = y^k with k > 2. 3
1, 0, 2, 0, 0, 7, 1, 0, 0, 2, 1, 1, 0, 3, 2, 1, 2, 2, 1, 0, 0, 3, 0, 1, 2, 1, 8, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 4, 1, 0, 0, 0, 1, 2, 0, 5, 3, 2, 0, 0, 0, 3, 1, 3, 2, 0, 0, 0, 6, 1, 0, 5, 3, 1, 0, 1, 0, 0, 0, 4, 2, 0, 2, 0, 2, 1, 0, 2, 1, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 0, 2, 1, 1, 0, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

COMMENTS

Bugeaud, Mignotte and Siksek find all solutions for n <= 100.

LINKS

Table of n, a(n) for n=2..100.

Yann Bugeaud, Maurice Mignotte and Samir Siksek, Classical and modular approaches to exponential Diophantine equations II. The Lebesgue-Nagell equation

EXAMPLE

a(4) = 2 because there are two solutions: 2^2+4=2^3 and 11^2+4=5^3.

MATHEMATICA

Table[cnt=0; Do[x=Sqrt[y^k-n]; If[IntegerQ[x], cnt++ ], {k, 3, 20}, {y, 600}]; cnt, {n, 2, 100}]

CROSSREFS

Cf. A094597, A094598, A094599.

Sequence in context: A161800 A246608 A100344 * A143024 A271971 A278157

Adjacent sequences:  A094593 A094594 A094595 * A094597 A094598 A094599

KEYWORD

hard,nonn

AUTHOR

T. D. Noe, May 13 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 14:18 EST 2019. Contains 329371 sequences. (Running on oeis4.)