OFFSET
1,2
COMMENTS
Row n consists of n numbers, first F(2n-1) and last F(2n).
Central numbers: (1,6,40,273,...) = A081016.
Row sums: A001870.
Alternating row sums: 1,1,7,7,48,48,329,329; the sequence b=(1,7,48,329,...) is A004187, given by b(n)=F(4n+2)-b(n-1) for n>=2, with b(1)=1.
In each row, the difference between neighboring terms is a Fibonacci number.
LINKS
G. C. Greubel, Rows n = 1..100 of triangle, flattened
Clark Kimberling, Orderings of products of Fibonacci numbers, Fibonacci Quarterly 42:1 (2004), pp. 28-35.
FORMULA
Row n: F(2)F(2n-1), F(4)F(2n-3), ..., F(2n)F(1).
EXAMPLE
Triangle begins:
1;
2, 3;
5, 6 8;
13, 15, 16, 21;
34, 39, 40, 42, 55;
89, 102, 104, 105, 110, 144; ...
MATHEMATICA
Table[Fibonacci[2*k]*Fibonacci[2*n-2*k+1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 15 2019 *)
PROG
(PARI) row(n) = vector(n, k, fibonacci(2*k)*fibonacci(2*n-2*k+1));
tabl(nn) = for(n=1, nn, print(row(n))); \\ Michel Marcus, May 03 2016
(Magma) [Fibonacci(2*k)*Fibonacci(2*n-2*k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 15 2019
(Sage) [[fibonacci(2*k)*fibonacci(2*n-2*k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 15 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> Fibonacci(2*k)*Fibonacci(2*n-2*k+1) ))); # G. C. Greubel, Jul 15 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 12 2004
STATUS
approved