login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094533 Number of one-element transitions among partitions of the integer n for labeled parts. 4
0, 0, 2, 8, 22, 48, 98, 178, 316, 524, 856, 1334, 2066, 3084, 4578, 6626, 9530, 13434, 18854, 26022, 35764, 48520, 65526, 87550, 116536, 153674, 201906, 263258, 342006, 441366, 567754, 726032, 925588, 1174010, 1484664, 1869072, 2346586, 2934044 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol

FORMULA

a(n) = Sum_p=1^P(n) Sum_i=1^D(p) Sum_j=i^D(p) 1 [subject to: d(i, p) <= d(j, p) ]; P(n) = number of partitions of n, D(p) = number of digits in partition p, d(i, p) and d(j, p) = digits number i and j in partition p of integer n.

a(n) = Sum_i=1^P(n) p(i, n)^2 - p(i, n), where P(n) is the number of integer partitions of n and p(i, n) is the number of parts of the i-th partition of n.

G.f.: (log(1-x)^2 - log(1-x)*log(x) + psi_x(1)*(2*log(1-x) - log(x) + psi_x(1)) + psi^1_x(1))/((x; x)_inf * log(x)^2), where psi_q(z) is the q-digamma function, psi^1_q(z) is the q-trigamma function, and (a; q)_inf is the q-Pochhammer symbol (the Euler function). To get this g.f., take the derivative (d/da)^2 (x^2/(a; x)_inf) and let a = x. - Vladimir Reshetnikov, Nov 21 2016

EXAMPLE

In the labeled case we have 22 one-element transitions among all partitions of n=4:

[1,1,1,1] -> [1,1,2] arises 6 times (the first 1 added to the second 1 gives 2,

the first 1 added to the third 1 gives 2, the first 1 added to the fourth 1 gives 2, the second 1 added to the third 1 gives 2, the second 1 added to the fourth 1 gives 2, the third 1 added to the fourth 1 gives 2),

[1,1,2] -> [2,2] arises 1 times,

[1,1,2] -> [1,3] arises 2 times,

[2,2] -> [1,3] arises 1 times,

[1,3] -> [4] arises 1 time,

which gives 11 upwards transitions and 22 transitions in total if we include downwards transitions.

n=4: partition number p=1 is [1,1,1,1],

digits d(1,1)=1, d(2,1)=1 contribute 1,

digits d(1,1)=1, d(3,1)=1 contribute 1,

etc...

digits d(3,1)=1, d(4,1)=1 contribute 1,

(in total 6 contributions by [1,1,1,1]);

partition number p=2 is [1,1,2],

digits d(1,2)=1, d(2,2)=1 contribute 1,

digits d(1,2)=1, d(3,2)=2 contribute 1,

digits d(2,2)=1, d(3,2)=2 contribute 1;

partition number p=3 is [2,2],

digits d(1,3)=2, d(2,3)=2 contribute 1;

partition number p=4 is [1,3],

digits d(1,4)=1, d(2,4)=3 contribute 1;

partition number p=5 is [4],

digit d(1,5)=4 contributes 0;

MAPLE

main := proc(n::integer) local a, ndxp, ListOfPartitions, APartition, PartOfAPartition; with(combinat): ListOfPartitions:=partition(n); a:=0; for ndxp from 1 to nops(ListOfPartitions) do APartition := ListOfPartitions[ndxp]; a := a + nops(APartition)^2 - nops(APartition); end do; print("n, a(n):", n, a); end proc;

# second Maple program:

b:= proc(n, i) option remember; local f, g;

      if n=0 then [1, [1]] elif i<1 then [0, [0]]

    else f:= b(n, i-1); g:= `if`(i>n, [0, [0]], b(n-i, i));

         [f[1]+g[1], zip((x, y)-> x+y, f[2], [0, g[2][]], 0)]

      fi

    end:

a:= n-> (l-> add(l[t+1]*t*(t-1), t=1..nops(l)-1))(b(n$2)[2]):

seq(a(n), n=0..50);  # Alois P. Heinz, Apr 05 2012

MATHEMATICA

a[n_] := Block[{p = IntegerPartitions[n], l = PartitionsP[n]}, Sum[ Length[p[[k]]]^2 - Length[p[[k]]], {k, l}]]; Table[ a[n], {n, 0, 37}] (* Robert G. Wilson v, Jul 13 2004, updated by Jean-Fran├žois Alcover, Jan 29 2014 *)

Simplify@Table[SeriesCoefficient[(Log[1 - x]^2 - Log[1 - x] Log[x] + QPolyGamma[1, x] (2 Log[1 - x] - Log[x] + QPolyGamma[1, x]) + QPolyGamma[1, 1, x])/(QPochhammer[x] Log[x]^2), {x, 0, n}], {n, 0, 40}] (* Vladimir Reshetnikov, Nov 21 2016 *)

Simplify@Table[SeriesCoefficient[2 q^2/QPochhammer[q + a, q], {a, 0, 2}, {q, 0, n}], {n, 0, 40}] (* Vladimir Reshetnikov, Nov 22 2016 *)

CROSSREFS

Cf. A093695.

Sequence in context: A137101 A212970 A212683 * A006696 A094939 A006732

Adjacent sequences:  A094530 A094531 A094532 * A094534 A094535 A094536

KEYWORD

nonn

AUTHOR

Thomas Wieder, Jun 05 2004

EXTENSIONS

More terms from Robert G. Wilson v, Jul 13 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 08:45 EST 2016. Contains 279045 sequences.