login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094533 Number of one-element transitions among partitions of the integer n for labeled parts. 3
0, 0, 2, 8, 22, 48, 98, 178, 316, 524, 856, 1334, 2066, 3084, 4578, 6626, 9530, 13434, 18854, 26022, 35764, 48520, 65526, 87550, 116536, 153674, 201906, 263258, 342006, 441366, 567754, 726032, 925588, 1174010, 1484664, 1869072, 2346586, 2934044 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..700

FORMULA

a(n) = Sum_p=1^P(n) Sum_i=1^D(p) Sum_j=i^D(p) 1 [subject to: d(i, p) <= d(j, p) ]; P(n) = number of partitions of n, D(p) = number of digits in partition p, d(i, p) and d(j, p) = digits number i and j in partition p of integer n.

a(n) = Sum_i=1^P(n) p(i, n)^2 - p(i, n), where P(n) is the number of integer partitions of n and p(i, n) is the number of parts of the i-th partition of n.

EXAMPLE

In the labeled case we have 22 one-element transitions among all partitions of n=4:

[1,1,1,1] -> [1,1,2] arises 6 times (the first 1 added to the second 1 gives 2,

the first 1 added to the third 1 gives 2, the first 1 added to the fourth 1 gives 2, the second 1 added to the third 1 gives 2, the second 1 added to the fourth 1 gives 2, the third 1 added to the fourth 1 gives 2),

[1,1,2] -> [2,2] arises 1 times,

[1,1,2] -> [1,3] arises 2 times,

[2,2] -> [1,3] arises 1 times,

[1,3] -> [4] arises 1 time,

which gives 11 upwards transitions and 22 transitions in total if we include downwards transitions.

n=4: partition number p=1 is [1,1,1,1],

digits d(1,1)=1, d(2,1)=1 contribute 1,

digits d(1,1)=1, d(3,1)=1 contribute 1,

etc...

digits d(3,1)=1, d(4,1)=1 contribute 1,

(in total 6 contributions by [1,1,1,1]);

partition number p=2 is [1,1,2],

digits d(1,2)=1, d(2,2)=1 contribute 1,

digits d(1,2)=1, d(3,2)=2 contribute 1,

digits d(2,2)=1, d(3,2)=2 contribute 1;

partition number p=3 is [2,2],

digits d(1,3)=2, d(2,3)=2 contribute 1;

partition number p=4 is [1,3],

digits d(1,4)=1, d(2,4)=3 contribute 1;

partition number p=5 is [4],

digit d(1,5)=4 contributes 0;

MAPLE

main := proc(n::integer) local a, ndxp, ListOfPartitions, APartition, PartOfAPartition; with(combinat): ListOfPartitions:=partition(n); a:=0; for ndxp from 1 to nops(ListOfPartitions) do APartition := ListOfPartitions[ndxp]; a := a + nops(APartition)^2 - nops(APartition); end do; print("n, a(n):", n, a); end proc;

# second Maple program:

b:= proc(n, i) option remember; local f, g;

      if n=0 then [1, [1]] elif i<1 then [0, [0]]

    else f:= b(n, i-1); g:= `if`(i>n, [0, [0]], b(n-i, i));

         [f[1]+g[1], zip((x, y)-> x+y, f[2], [0, g[2][]], 0)]

      fi

    end:

a:= proc(n) local l; l:= b(n, n)[2];

      add (l[t+1]*t*(t-1), t=1..nops(l)-1)

    end:

seq(a(n), n=0..50); # Alois P. Heinz, Apr 05 2012

MATHEMATICA

a[n_] := Block[{p = IntegerPartitions[n], l = PartitionsP[n]}, Sum[ Length[p[[k]]]^2 - Length[p[[k]]], {k, l}]]; Table[ a[n], {n, 0, 37}] (* Robert G. Wilson v, Jul 13 2004, updated by Jean-Fran├žois Alcover, Jan 29 2014 *)

CROSSREFS

Cf. A093695.

Sequence in context: A137101 A212970 A212683 * A006696 A094939 A006732

Adjacent sequences:  A094530 A094531 A094532 * A094534 A094535 A094536

KEYWORD

nonn

AUTHOR

Thomas Wieder, Jun 05 2004

EXTENSIONS

More terms from Robert G. Wilson v, Jul 13 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 22:37 EST 2014. Contains 252372 sequences.