This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094527 Triangle T(n,k), read by rows, defined by T(n,k)= binomial(2*n,n-k). 15
 1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Right-hand side of even-numbered rows of Pascal's triangle. Row sums are A032443. Reverse of A062344. Right-hand side of A034870. Binomial transform of trinomial triangle A094531. Triangle T(n,k),0<=k<=n, read by rows defined by :T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=2*T(n-1,0)+2*T(n-1,1), T(n,k)=T(n-1,k-1)+2*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 14 2007 Central coefficients T(2n,n) are binomial(4n,n) (A005810). The A- and Z-sequence for this Riordan triangle is [1,2,1] and [2,2], respectively. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. See also the Philippe Deléham comment above. - Wolfdieter Lang, Nov 22 2012 LINKS Indranil Ghosh, Rows 0..100 of triangle, flattened P. Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages. Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19. A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87. Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From N. J. A. Sloane, Sep 16 2012 P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263 T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014. FORMULA Riordan array (1/sqrt(1-4x)), (1-2x-sqrt(1-4x))/(2x)). Column k has e.g.f. exp(2x)Bessel_I(k, 2x). - Paul Barry, Jul 14 2005 Product of Riordan arrays (1/(1-x), x/(1-x)) (Pascal's triangle, A007318) and (1/sqrt(1-2x-3x^2), (1-x-sqrt(1-2x-3x^2))/(2x)) (A094531). Inverse is A110162. - Paul Barry, Jul 14 2005 T(n,k) = sum{j=0..n, C(n,j)C(n,j-k)}. - Paul Barry, Mar 07 2006 T(n,k) = Sum_{h>=k}A039599(n,h) . Sum_{0<=k<=n}T(n,k)= A032443(n). - Philippe Deléham, May 01 2006 Sum_{k = 0...n}T(n,k)^2 = A036910(n). - Philippe Deléham, May 07 2006 Sum_{k, 0<=k<=n}T(n,k)*(-1)^k=A088218(n). - Philippe Deléham, Mar 14 2007 From Wolfdieter Lang, Nov 22 2012: (Start) The o.g.f. for the row polynomials P(n,x) := sum(T(n,k)*x^k, k=0..n) is G(z,x) = (-x + (1+x)*z + x*z*c(z))/(sqrt(1-4*z)*((1+x)^2*z -x)) with c the o.g.f. of A000108 (Catalan). This follows from the Riordan property. The o.g.f. for column No. k is (c(x)-1)^k/sqrt(1-4*x) (from the Riordan property). (End) From Peter Bala, Jun 29 2015: (Start) Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - 2*x - sqrt(1 - 4*x) )/(2*x) and so belongs to the hitting time subgroup of the Riordan group (see Peart and Woan, Example 5.1). T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 + x)^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End) From Peter Bala, Jul 21 2015: (Start) n-th row polynomial R(n,t) = [x^n] ( (1 + (1 + t)*x)^2/(1 + t*x) )^n. exp ( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (2 + t)*x + (5 + 4*t + t^2)*x^2 + ... is the o.g.f. for A039598. (End) EXAMPLE The triangle T(n,k) begins: n\k      0      1      2     3     4     5    6    7   8  9 10 0:       1 1:       2      1 2:       6      4      1 3:      20     15      6     1 4:      70     56     28     8     1 5:     252    210    120    45    10     1 6:     924    792    495   220    66    12    1 7:    3432   3003   2002  1001   364    91   14    1 8:   12870  11440   8008  4368  1820   560  120   16   1 9:   48620  43758  31824 18564  8568  3060  816  153  18  1 10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20  1 ... Reformatted ad extended by Wolfdieter Lang, Nov 22 2012 From Paul Barry, Sep 07 2009: (Start) Production array is 2, 1, 2, 2, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1 (End) From Wolfdieter Lang, Nov 22 2012: (Start) Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6. Recurrence from the Riordan Z-sequence [2,2]: T(7,0) =  3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the Philippe Deléham comment above. (End) MAPLE A094527 := proc(n, k)     binomial(2*n, n-k) ; end proc: # R. J. Mathar, Jun 04 2013 MATHEMATICA T[n_, k_] := Binomial[2*n, n - k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *) CROSSREFS Cf. A007318, A032443, A039599, A039598. Sequence in context: A073387 A259099 A125693 * A054335 A110681 A117852 Adjacent sequences:  A094524 A094525 A094526 * A094528 A094529 A094530 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, May 07 2004 EXTENSIONS Entry revised by N. J. A. Sloane, Mar 23 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 22:20 EDT 2019. Contains 326254 sequences. (Running on oeis4.)