OFFSET
1,1
COMMENTS
When n=i^2+(i+1)^2, then a=n-i-1 and b=n+i-1 is a solution. See A094553.
EXAMPLE
35 is in this sequence because 18^2+19^2+...+34^2 = 35^2+36^2+...+42^2 and 35 is not the sum of two consecutive squares.
MATHEMATICA
lst={}; Do[i1=n-1; i2=n; s1=i1^2; s2=i2^2; While[i1>1 && s1!=s2, If[s1<s2, i1--; s1=s1+i1^2, i2++; s2=s2+i2^2]]; m=(i2-i1)/2; m=m^2+(m+1)^2; If[s1==s2 && n!=m, AppendTo[lst, n]], {n, 2, 100000}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, May 10 2004
STATUS
approved