login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094499 Smallest prime factor of 2^(2^n)+3^(2^n), i.e., exponents are powers of 2. 2
13, 97, 17, 3041, 1153, 769, 257, 72222721, 4043777, 2330249132033, 625483777, 286721, 14496395542529, 2752513, 65537, 319291393, 54498164737 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Factors are of the form k*2^(n+1)+1.

REFERENCES

Anders Bjorn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, Nbr 221, pp. 441-446, 1998.

LINKS

Table of n, a(n) for n=1..17.

Dario Alejandro Alpern, Factorization using the Elliptic Curve Method.

Anders Bjorn and Hans Riesel, Factors of Generalized Fermat numbers..

MATHEMATICA

f[n_] := Block[{k = 1, m = 2^(n + 1)}, While[ Mod[ PowerMod[2, 2^n, k*m + 1] + PowerMod[3, 2^n, k*m + 1], k*m + 1] != 0, k++ ]; k*m + 1]; Table[ f[n], {n, 9}] (* Robert G. Wilson v, Jun 03 2004 *)

CROSSREFS

Sequence in context: A044645 A153703 A222503 * A242385 A141894 A275879

Adjacent sequences:  A094496 A094497 A094498 * A094500 A094501 A094502

KEYWORD

nonn

AUTHOR

Labos Elemer, Jun 02 2004

EXTENSIONS

Edited and extended by Robert G. Wilson v, Jun 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 14:49 EST 2016. Contains 278781 sequences.