This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094499 Smallest prime factor of 2^(2^n)+3^(2^n), i.e., exponents are powers of 2. 2
 13, 97, 17, 3041, 1153, 769, 257, 72222721, 4043777, 2330249132033, 625483777, 286721, 14496395542529, 2752513, 65537, 319291393, 54498164737 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Factors are of the form k*2^(n+1)+1. REFERENCES Anders Bjorn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, Nbr 221, pp. 441-446, 1998. LINKS Dario Alejandro Alpern, Factorization using the Elliptic Curve Method. Anders Bjorn and Hans Riesel, Factors of Generalized Fermat numbers.. MATHEMATICA f[n_] := Block[{k = 1, m = 2^(n + 1)}, While[ Mod[ PowerMod[2, 2^n, k*m + 1] + PowerMod[3, 2^n, k*m + 1], k*m + 1] != 0, k++ ]; k*m + 1]; Table[ f[n], {n, 9}] (* Robert G. Wilson v, Jun 03 2004 *) CROSSREFS Sequence in context: A044645 A153703 A222503 * A242385 A141894 A275879 Adjacent sequences:  A094496 A094497 A094498 * A094500 A094501 A094502 KEYWORD nonn AUTHOR Labos Elemer, Jun 02 2004 EXTENSIONS Edited and extended by Robert G. Wilson v, Jun 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.