login
Triangular array T(n,k) = Fibonacci(n+4-k)*C(n,k), k=0..n, n>=0.
10

%I #8 Sep 08 2022 08:45:13

%S 3,5,3,8,10,3,13,24,15,3,21,52,48,20,3,34,105,130,80,25,3,55,204,315,

%T 260,120,30,3,89,385,714,735,455,168,35,3,144,712,1540,1904,1470,728,

%U 224,40,3,233,1296,3204,4620,4284,2646,1092,288,45,3,377,2330,6480,10680,11550,8568,4410,1560,360,50,3

%N Triangular array T(n,k) = Fibonacci(n+4-k)*C(n,k), k=0..n, n>=0.

%C Row sums are Fibonacci numbers.

%C Row sums with alternating signs are Fibonacci numbers or their negatives.

%H G. C. Greubel, <a href="/A094444/b094444.txt">Rows n = 0..100 of triangle, flattened</a>

%F From _G. C. Greubel_, Oct 30 2019: (Start)

%F T(n,k) = binomial(n,k)*Fibonacci(n-k+4).

%F Sum_{k=0..n} T(n,k) = Fibonacci(2*n+4).

%F Sum_{k=0..n} (-1)^(k+1) * T(n,k) = (-1)^n * Fibonacci(n-4). (End)

%e First few rows:

%e 3;

%e 5, 3;

%e 8, 10, 3;

%e 13, 24, 15, 3;

%e 21, 52, 48, 20, 3;

%e 34, 105, 130, 80, 25, 3;

%p with(combinat); seq(seq(fibonacci(n-k+4)*binomial(n,k), k=0..n), n=0..12); # _G. C. Greubel_, Oct 30 2019

%t Table[Fibonacci[n-k+4]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 30 2019 *)

%o (PARI) T(n,k) = binomial(n,k)*fibonacci(n-k+4);

%o for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Oct 30 2019

%o (Magma) [Binomial(n,k)*Fibonacci(n-k+4): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Oct 30 2019

%o (Sage) [[binomial(n,k)*fibonacci(n-k+4) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Oct 30 2019

%o (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+4) ))); # _G. C. Greubel_, Oct 30 2019

%Y Cf. A000045, A094435, A094436, A094437, A094438, A094439, A094440, A094441, A094442, A094443.

%K nonn,tabl

%O 0,1

%A _Clark Kimberling_, May 03 2004