This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094416 Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n). 17
 1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also, r times the number of (r+1)-level labeled linear rooted trees with n leaves. "AIJ" (ordered, indistinct, labeled) transform of {r,r,r,...}. Stirling transform of r^n*n!, i.e. of e.g.f. 1/(1-rx). Also, Bo(r,s) is ((x*d/dx)^n)(1/(r+1-rx)) evaluated at x=1. r-th ordered Bell polynomial (A019538) evaluated at n. Bo(r,n) is the n-th moment of a geometric distribution with probability parameter = 1/(r+1).  Here, geometric distribution is the number of failures prior to the first success. - Geoffrey Critzer, Jan 01 2019 LINKS Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018. P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, 2003. C. G. Bower, Transforms FORMULA E.g.f.: 1/(r+1-re^x). Bo(r, n) = sum(k=0..n, k!*r^k*Stirling2(n, k)) = 1/(r+1) * sum(k=1..inf, k^n*{r/(r+1)}^k), with r>0, n>0. Recurrence: Bo(r, n) = r * sum( k=1..n, C(n, k)*Bo(r, n-k) ), with Bo(r, 0)=1. EXAMPLE 1,  3,   13,    75,     541,     4683,      47293, ... 2, 10,   74,   730,    9002,   133210,    2299754, ... 3, 21,  219,  3045,   52923,  1103781,   26857659, ... 4, 36,  484,  8676,  194404,  5227236,  163978084, ... 5, 55,  905, 19855,  544505, 17919055,  687978905, ... 6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ... MATHEMATICA Bo[_, 0]=1; Bo[r_, n_] := Bo[r, n] = r Sum[Binomial[n, k] Bo[r, n-k], {k, n}]; Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *) CROSSREFS Rows 1-6 are A000670, A004123, A032033, A094417, A094418, A094419. Columns include A014105, A094421. Main diagonal is A094420. Antidiagonal sums are A094422. Cf. A131689. [Philippe Deléham, Nov 03 2008] Sequence in context: A306101 A123027 A100652 * A218868 A152300 A117030 Adjacent sequences:  A094413 A094414 A094415 * A094417 A094418 A094419 KEYWORD nonn,tabl AUTHOR Ralf Stephan, May 02 2004 EXTENSIONS Offset corrected by Geoffrey Critzer, Jan 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)