login
A094403
a(1) = 1; a(n) = (sum of previous terms)^n mod n.
0
1, 1, 2, 0, 4, 4, 5, 1, 0, 4, 0, 4, 0, 4, 0, 0, 13, 1, 6, 0, 8, 20, 9, 9, 1, 23, 0, 8, 12, 10, 26, 0, 11, 17, 29, 1, 12, 20, 8, 16, 3, 1, 36, 0, 0, 18, 19, 1, 18, 26, 13, 9, 10, 0, 34, 32, 30, 34, 43, 1, 8, 36, 8, 0, 50, 60, 43, 21, 25, 1, 18, 0, 12, 70, 25, 45, 30, 40, 4, 16, 80, 72, 37, 1
OFFSET
1,3
EXAMPLE
a(4) = 0 because the previous terms 1, 1, 2 sum to 4 and 4^4 mod 4 is 0. a(5) = 4 because the previous terms 1, 1, 2, 0 sum to 4 and 4^5 mod 5 is 4.
MAPLE
L := [1]; s := 1; p := 2; while (nops(L) < 90) do; if 1>0 then; t := (s^p) mod p; L := [op(L), t]; s := s+t; p := p+1; fi; od; L;
MATHEMATICA
Module[{aa={1}, n=1}, Do[n=n+1; AppendTo[aa, PowerMod[Total[aa], n, n]], {90}]; aa] (* Harvey P. Dale, Apr 04 2013 *)
CROSSREFS
Sequence in context: A116578 A078050 A134271 * A244340 A363062 A316987
KEYWORD
nonn
AUTHOR
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 03 2004
STATUS
approved