OFFSET
0,1
COMMENTS
REFERENCES
See A025052.
EXAMPLE
a(1) = 193 because 193 is the largest number with a unique representation: (a,b,c) = (4,7,15).
MATHEMATICA
cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++; ], {n, 10000}]; Table[nSol[[i, 2]], {i, cntMax+1}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 28 2004
EXTENSIONS
More terms (using limit 10^6) from Joerg Arndt, Oct 01 2017
STATUS
approved