login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094328 Iterate the map in A006369 starting at 4. 20
4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.

Index entries for sequences related to 3x+1 (or Collatz) problem

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 1).

FORMULA

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.

Periodic with period length 5.

a(n)=(1/50)*{51*(n mod 5)+61*[(n+1) mod 5]+11*[(n+2) mod 5]+11*[(n+3) mod 5]+21*[(n+4) mod 5]}, with n>=0 - Paolo P. Lava, Jun 26 2007

MATHEMATICA

Table[{4, 5, 7, 9, 6}, {21}] // Flatten  (* Jean-Fran├žois Alcover, Jun 10 2013 *)

LinearRecurrence[{0, 0, 0, 0, 1}, {4, 5, 7, 9, 6}, 105] (* Ray Chandler, Sep 03 2015 *)

PROG

(Haskell)

a094328 n = a094328_list !! (n-1)

a094328_list = iterate a006369 4  -- Reinhard Zumkeller, Dec 31 2011

CROSSREFS

Cf. A006368, A028394-A028397, A094329, A185589, A185590.

Sequence in context: A140076 A135186 A011336 * A081095 A080596 A183866

Adjacent sequences:  A094325 A094326 A094327 * A094329 A094330 A094331

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 04 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 11:35 EST 2019. Contains 329370 sequences. (Running on oeis4.)