login
Expansion of g.f.: (1-5*x)/((1-6*x)*(1-x)^2).
2

%I #13 Aug 18 2023 17:05:00

%S 1,3,11,55,315,1871,11203,67191,403115,2418655,14511891,87071303,

%T 522427771,3134566575,18807399395,112844396311,677066377803,

%U 4062398266751,24374389600435,146246337602535,877478025615131,5264868153690703,31589208922144131,189535253532864695

%N Expansion of g.f.: (1-5*x)/((1-6*x)*(1-x)^2).

%H G. C. Greubel, <a href="/A094259/b094259.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-13,6).

%F a(n) = (6^(n+1) + 20*n + 19)/25.

%F E.g.f.: (1/25)*(6*exp(6*x) + (19 + 20*x)*exp(x)). - _G. C. Greubel_, Aug 18 2023

%t LinearRecurrence[{8,-13,6}, {1,3,11}, 41] (* _G. C. Greubel_, Aug 18 2023 *)

%o (Magma) [(6^(n+1) +20*n +19)/25: n in [0..40]]; // _G. C. Greubel_, Aug 18 2023

%o (SageMath) [(6^(n+1) +20*n +19)/25 for n in range(41)] # _G. C. Greubel_, Aug 18 2023

%Y Cf. A094195.

%Y A row of A094250.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Jun 02 2004