login
A094231
Lesser member p of sexy primes (p, p+6) such that (p+1, p+2, p+3, p+4, p+5) all have the same number of prime divisors (counted with multiplicity).
1
601, 42181, 70201, 240953, 277493, 414361, 418793, 619813, 632147, 637073, 723161, 732233, 739433, 761393, 781961, 879001, 934481, 979201, 1154233, 1320721, 1327673, 1357673, 1611361, 1685521, 1866233, 1877833, 1950457
OFFSET
1,1
LINKS
EXAMPLE
42181 is a term because 42181 and 42187 are sexy primes while 42182-42186 each have 4 prime divisors (counting multiplicity).
MATHEMATICA
Select[Range[2*10^6], AllTrue[{#, #+6}, PrimeQ]&&Length[Union[ PrimeOmega[ Range[ #+1, #+5]]]]==1&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 16 2015 *)
PROG
(Magma) f:=func<n|&+[p[2]: p in Factorization(n)]>; [p:p in PrimesUpTo(2000000)| IsPrime(p+6) and forall{k:k in [2..5]|f(p+k) eq f(p+1)} ]; // Marius A. Burtea, Dec 16 2019
CROSSREFS
Sequence in context: A302559 A232073 A278206 * A292069 A107440 A218055
KEYWORD
easy,nonn
AUTHOR
Jason Earls, May 29 2004
STATUS
approved