%I #23 Sep 08 2022 08:45:13
%S 0,0,0,0,7,112,1092,8400,56100,341088,1939938,10498488,54679625,
%T 276276000,1362040680,6580248480,31256180280,146350008000,
%U 676868787000,3097351569312,14042319855102,63144549413792,281895309883000
%N Number of permutations of length n with exactly 3 occurrences of the pattern 2-13.
%D R. Lie, Permutations and Patterns, Master's Thesis, Goeteborg, Sweden: Chalmers University of Technology, 2004.
%H Alois P. Heinz, <a href="/A094219/b094219.txt">Table of n, a(n) for n = 1..500</a>
%H R. Parviainen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Parviainen/parviainen3.html">Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%F a(n) = (1/3)*binomial(n+2,2)*binomial(2*n,n-5).
%F G.f.: (-7*x^2+8*x-2-(4*x^7+14*x^6+84*x^5-350*x^4+350*x^3-147*x^2+28*x-2) /(1-4*x)^(5/2)) /(2*x^5). - _Mark van Hoeij_, Apr 30 2013
%t Table[Binomial[n + 2, 2] Binomial[2 n, n - 5]/3, {n, 1, 30}] (* _Vincenzo Librandi_, Aug 20 2015 *)
%o (PARI) a(n)=1/3*binomial(n+2,2)*binomial(2*n,n-5)
%o (Magma) [(1/3)*Binomial(n+2,2)*Binomial(2*n,n-5): n in [1..30]]; // _Vincenzo Librandi_, Aug 20 2015
%Y Cf. A094218.
%Y Column k=3 of A263776.
%K nonn
%O 1,5
%A _Benoit Cloitre_, May 27 2004