login
A094096
Min{m: n = Sum((m mod (1+k*L(n)!))*2^(k-1): 1<=k<=L(n))}, where L(n) = length of binary representation of n, cf. A070939, A000142.
1
1, 5, 1, 494, 533, 133, 1, 361131, 998130, 318354, 389455, 275577, 42778, 14162, 1, 4436526107, 21759994113, 223006618265, 97254937860, 19669357917
OFFSET
1,2
COMMENTS
a(2^n - 1) = 1.
EXAMPLE
n=5->'101', L(5)=3, L(5)!=6, a(5)=533: (533 mod (1+1*6))*2^0 +
(533 mod (1+2*6))*2^1 + (533 mod (1+3*6))*2^2 = (533 mod 7)*1+ (533 mod
13)*2 + (533 mod 19)*4 = 1*1 + 0*2 + 1*4 = 5.
CROSSREFS
Sequence in context: A360989 A162227 A075266 * A009826 A255855 A255858
KEYWORD
nonn,more
AUTHOR
Reinhard Zumkeller, May 05 2004
EXTENSIONS
Corrected and extended. Sean A. Irvine, Sep 17 2009
STATUS
approved