

A094076


Smallest k such that prime(n)+2^k is prime, or 1 if no such prime exists.


11



0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 4, 2, 1, 2, 5, 3, 1, 8, 2, 1, 4, 2, 7, 3, 2, 1, 2, 1, 2, 7, 2, 3, 1, 10, 1, 4, 4, 2, 5, 3, 1, 4, 1, 2, 1, 6, 4, 2, 1, 2, 3, 1, 4, 5, 9, 3, 1, 20, 2, 1, 6, 7, 2, 1, 2, 5, 4, 4, 1, 2, 27, 3, 4, 4, 2, 15, 3, 2, 3, 10, 1, 8, 1, 4, 2, 7, 3, 2, 1, 2, 5, 3, 2, 3, 2, 7, 5, 1, 6, 4, 4, 9, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Conjecture: k > 0 for all n.
For all primes p < 1000 there exists a k such that p + 2^k is prime. However, for p = prime(321) = 2131, p + 2^k is not prime for all k < 30000. The conjecture may be in question. Similarly, I cannot find k such that p + 2^k is prime for p = 7013, 8543, 10711, 14033 for k < 20000.  Cino Hilliard, Jun 27 2005
prime(80869739673507329) = 3367034409844073483, so a(80869739673507329) = 1 since 2^k + 3367034409844073483 is covered by {3, 5, 17, 257, 641, 65537, 6700417}.  Charles R Greathouse IV, Feb 08 2008
k=271129 is a smaller counterexample: gcd(k+2^n,2^241)>1 always holds using (1 mod 2, 0 mod 4, 2 mod 8, 6 mod 24, 14 mod 24 and 22 mod 24) as a covering for the n's. k with gcd(k+2^n,2^241)>1 always true were first found by Erdos (see refs).  Bruno Mishutka (bruno.mishutka(AT)googlemail.com), Mar 11 2009


REFERENCES

P. Erdos, On integers of the form 2^k+p and some related problems, Summa Brasil. Math., 2 (1950), 113123. [From Bruno Mishutka (bruno.mishutka(AT)googlemail.com), Mar 11 2009]
A. O. L. Atkins and B. J. Birch, Computers in Number Theory, Academic Press, 1971, page 74. [From Bruno Mishutka (bruno.mishutka(AT)googlemail.com), Mar 11 2009]


LINKS

Table of n, a(n) for n=1..104.
Charles R Greathouse IV, Constructing a covering set for numbers 2^k + p
Charles R Greathouse IV, Table of n, a(n) for n = 1..3000 (with question marks at 321, 1066, 2168)


EXAMPLE

p = 773, k = 995, p + 2^k is prime.
p = 5101, k = 5760, p + 2^k is prime.


MATHEMATICA

sk[n_]:=Module[{p=Prime[n], k=1}, While[!PrimeQ[p+2^k], k++]; k]; Join[{0}, Array[sk, 110, 2]] (* Harvey P. Dale, Jul 07 2013 *)


PROG

(PARI) pplus2ton(n, m) = { local(k, s, p, y, flag); s=0; forprime(p=2, n, flag=1; for(k=0, m, y=p+2^k; if(ispseudoprime(y), print1(k, ", "); s++; flag=0; break) ); \ if(flag, print(p)); search for defiant primes. ); print(); print(s); } (Hilliard)


CROSSREFS

Cf. A067760.
Sequence in context: A083269 A097306 A102632 * A089611 A248470 A082067
Adjacent sequences: A094073 A094074 A094075 * A094077 A094078 A094079


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Apr 29 2004


EXTENSIONS

More terms from Don Reble (djr(AT)nk.ca), May 02 2004
More terms from Cino Hilliard, Jun 27 2005
More terms from Charles R Greathouse IV, Feb 08 2008


STATUS

approved



