This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094073 Coefficients arising in combinatorial field theory. 0
 4, 240, 49938, 24608160, 23465221750, 38341895571708, 98780305524248572, 377796303580335320432, 2048907276496726375662702, 15198414983297581845761672560, 149768511689247547252666676150490 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages). P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004. LINKS P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering FORMULA a(n)=(2n)!*bell(2n)*coeff(exp(x*sinh(x)), x^(2n)). - Emeric Deutsch, Jan 22 2005 MAPLE with(combinat): a:=n->bell(2*n)*(2*n)!*coeff(series(exp(x*sinh(x)), x=0, 40), x^(2*n)): seq(a(n), n=1..13); (Deutsch) CROSSREFS Cf. A000085, A005425, A094065-. Cf. A000110. Sequence in context: A132551 A013953 A051753 * A137342 A152793 A042769 Adjacent sequences:  A094070 A094071 A094072 * A094074 A094075 A094076 KEYWORD nonn AUTHOR N. J. A. Sloane, May 01 2004 EXTENSIONS More terms from Emeric Deutsch, Jan 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .