The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094067 Triangle read by rows: T(n,k) is the number of permutations p of [n] in which the length of the longest initial segment avoiding the 123-, the 132- and the 321-pattern is equal to k. 0
 1, 0, 2, 0, 3, 3, 0, 12, 7, 5, 0, 60, 35, 17, 8, 0, 360, 210, 102, 35, 13, 0, 2520, 1470, 714, 245, 70, 21, 0, 20160, 11760, 5712, 1960, 560, 134, 34, 0, 181440, 105840, 51408, 17640, 5040, 1206, 251, 55, 0, 1814400, 1058400, 514080, 176400, 50400, 12060 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums are the factorial numbers (A000142). Diagonal yields the Fibonacci numbers A000045. LINKS E. Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004. R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985. FORMULA T(n, k) = n!*[(k+1)fibonacci(k+1)-fibonacci(k+2)]/(k+1)! for 1<=k<=n-1; T(1, 1)=1; T(n, n)=fibonacci(n+1). EXAMPLE T(4,3)=7 because the permutations 4132, 3124, 2413, 4213, 2314 and 3214 do not avoid all three patterns 123, 132 and 213, but their initial segments of length three, namely 413, 312, 241, 421, 231 and 321, do. Triangle begins: 1; 0,2; 0,3,3; 0,12,7,5; 0,60,35,17,8; 0,360,210,102,35,13; 0,2520,1470,714,245,70,21; MAPLE with(combinat): T:=proc(n, k) if n=1 and k=1 then 1 elif n=1 then 0 elif k=1 then 0 elif k=n then fibonacci(n+1) elif k>0 and k

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 15:32 EST 2020. Contains 332137 sequences. (Running on oeis4.)